## MATH 245 F18, Exam 3 Solutions

1. Carefully define the following terms: = (for sets), Associativity theorem (for sets), Distributivity theorem (for sets), De Morgan's Law (for sets).
Two sets are equal if the have the exact same elements. Given sets $R, S, T$, the associativity theorem states that $(R \cup S) \cup T=R \cup(S \cup T),(R \cap S) \cap T=R \cap(S \cap T)$, and $(R \Delta S) \Delta T)=R \Delta(S \Delta T)$. Given sets $R, S, T$, the distributivity theorem states that $R \cup(S \cap T)=(R \cup S) \cap(R \cup T)$ and $R \cap(S \cup T)=(R \cap S) \cup(R \cap T)$. De Morgan's Law states, for sets $R, S, U$ with $R \subseteq U$ and $S \subseteq U$, that $(R \cup S)^{c}=R^{c} \cap S^{c}$ and $(R \cap S)^{c}=R^{c} \cup S^{c}$.
2. Carefully define the following terms: power set, disjoint, equicardinal, relation.

Given a set $S$, the power set of $S$ is the set whose elements are all the subsets of $S$. Two sets are disjoint if their intersection is the empty set. Two sets are equicardinal if their elements can be paired off. Given sets $S, T$, a relation from $S$ to $T$ is a subset of $S \times T$.
3. Let $R, S, T$ be sets. Draw a Venn diagram representing $(R \Delta S) \backslash(R \Delta T)$.

4. Let $S, T$ be sets. Prove that $|S \times T|=|T \times S|$.

Note: $|S \times T|=|S||T|$ is valid only for $S, T$ finite.
We pair the elements of $S \times T=\{(a, b): a \in S, b \in T\}$ with the elements of $T \times S=$ $\{(b, a): b \in T, a \in S\}$ via $(a, b) \leftrightarrow(b, a)$, for all $a \in S$ and for all $b \in T$.
5. Let $R, S, T$ be sets, with $S \subseteq T$. Prove that $R \cap S \subseteq R \cap T$.

Let $x \in R \cap S$. Then $x \in R \wedge x \in S$, and by simplification twice we conclude both $x \in R$ and $x \in S$. Now, since $x \in S$ and $S \subseteq T$, we have $x \in T$. We apply conjunction to $x \in R$ and $x \in T$ to get $x \in R \wedge x \in T$. Lastly, this means that $x \in R \cap T$.
6. Let $A, B$ be sets. Prove that $A \times(A \cap B) \subseteq(A \cup B) \times B$.

Let $x \in A \times(A \cap B)$. Then, $x=(u, v)$ with $u \in A$ and $v \in A \cap B$. By addition, $u \in A \vee u \in B$, so $u \in A \cup B$. Now, $v \in A \wedge v \in B$, and by simplification $v \in B$. Hence $x=(u, v)$ with $u \in A \cup B$ and $v \in B$, so $x \in(A \cup B) \times B$.
7. Let $S, T$ be sets with $T \subseteq S$. Let $R$ be a transitive relation on $S$. Prove that $\left.R\right|_{T}$ is transitive.
Let $(a, b),\left.(b, c) \in R\right|_{T}$. Then, $a, b, c \in T$ and also $(a, b),(b, c) \in R$. Since $R$ is transitive, $(a, c) \in R$. Since $a, c \in T$, also $\left.(a, c) \in R\right|_{T}$.
8. Let $R, S, T, U$ be sets, with $R \subseteq U$ and $S \subseteq T \subseteq U$. Prove that $R \cup T^{c} \subseteq R \cup S^{c}$.

Let $x \in R \cup T^{c}$. Hence $x \in R \vee x \in T^{c}$. We now have two cases: $x \in R$ and $x \in T^{c}$. Case $x \in R$ : By addition, $x \in R \vee x \in S^{c}$. Hence, $x \in R \cup S^{c}$.
Case $x \in T^{c}$ : Hence, $x \in U \backslash T$ and thus $x \in U \wedge x \notin T$. By simplification twice, we conclude both $x \in U$ and $x \notin T$. If $x \in S$, then (since $S \subseteq T$ ), $x \in T$, which is impossible. Thus $x \notin S$. We apply conjunction to $x \in U$ and $x \notin S$ to get $x \in U \wedge x \notin S$. Hence $x \in U \backslash S$, and thus $x \in S^{c}$. By addition, $x \in R \vee x \in S^{c}$ and hence $x \in R \cup S^{c}$.
9. Consider relation $S=\left\{(a, b): a \leq b^{2}\right\}$ on $\mathbb{R}$. Prove or disprove that $S$ is reflexive. $S$ is not reflexive. We need one explicit example, e.g. $0.5 \in \mathbb{R}$. Because $0.5 \not \leq 0.25=$ $(0.5)^{2},(0.5,0.5) \notin S$.
10. Consider relation $S=\left\{(a, b): a \leq b^{2}\right\}$ on $\mathbb{R}$. Prove that $S^{+}=R_{\text {full }}$.

In fact, we will prove $S \circ S=S^{(2)}=R_{\text {full }}$. Since $S^{+}=S^{(1)} \cup S^{(2)} \cup$ (other stuff), this will prove that $S^{+}=R_{\text {full }}$. Let $a, b \in \mathbb{R}$ be arbitrary. Set $c=-\sqrt{|a|}$. Since $a \leq|a|=(-\sqrt{|a|})^{2}=c^{2}$, we have $(a, c) \in S$. We also have $c=-\sqrt{|a|} \leq 0 \leq b^{2}$. Hence, $(c, b) \in S$. Combining $(a, c) \in S$ with $(c, b) \in S$, we conclude that $(a, b) \in S \circ S$.

